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0 Introduction
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Introduction - About the paper

@ Pre-print
@ Presented at IEEE RAS International 2019 Summer School

@ Research done at Queensland University of Technology, Australia
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Introduction - Problem

@ Where to look for objects within larger context?
e.g. “Please get the milk”

@ Humans intuitively know where to search

@ Probabilistic underlying process: items are not randomly placed, but
near a small set of other similar objects

@ Application? Smart domestic service robotics: indoors, household-like
environments
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Introduction - Contribution

They train an agent via Reinforcement Learning, using Graph
Convolutional Networks (GCNs)

@ Operate at graph-based map model of the environment

e Nodes: robot poses or static object landmarks
e Edges: within range for interaction

Agent learns to find non-static objects on the map, even if not seen
during training

Agent generalizes over different graphs

Fast convergence, and sped-up if pre-trained on proxy task
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© Concepts & Related Work
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Concepts - Semantic SLAM

SLAM: Simultaneous Localization and Mapping

SLAM in action

Semantic? — rich environment representations, with objects as central unit

Q@ SLAM++
@ QuadricSLAM
© Fusion++

These semantically rich graphs (with pose and object nodes) will be the
starting point
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Concepts - QuadricSLAM

QuadricSLAM - Siinderhauf et al

Objects as landmarks to estimate camera pose.

Uses DL-based low-dimensional visual descriptors.
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Concepts - Goal directed navigation

Objective: policy that enables robot to find specific target in environment

© Object Goal Task Taxonomy (more on this later)

@ Visual navigation: from raw pixels, features can be low-level or
high-level

© Literature on building implicit map representations
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Concepts - Graph Neural Networks

GNNs operate over graph data structures
A graph G is a pair (V, E) where:
e V is a set of vertices

o E is a set of edges
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2D convolution vs graph convolution
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Concepts - Graph Neural Networks

There are 4 families of GNNs:

@ Convolutional GNNs — used in this work
@ Recurrent GNNs

© Spatial-temporal GNNs

@ Graph Auto-encoders
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Concepts - Graph Convolutional Network (GCN)

hidden
layers

input layer output layer

Graph Convolutional Network
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Concepts - REINFORCE algorithm

function REINFORCE
Initialise 6 arbitrarily
for each episode {s1, a1, r, ..., ST—1,a7-1, T} ~ 79 doO
fort=1to T —1do
0 < 0 + aVglog mg(st, ar)ve
end for
end for
return 6
end function

AQt = aVelogﬂg(st, at)Vt

Vi = Qﬂg(sn at)
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© Problem
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Definition (Task)

Given an indoor environment and its graph, find a given non-static “target
object” by navigating to it
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Assumptions

1 Environment previously mapped using semantic SLAM
2 Map is a graph
Pose nodes and object nodes
- (pose-pose) edge: robot can navigate between both
(pose-object) edge: robot in range for interaction
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@ Robot Pose c
@ Object Landmark

Example graph shows vertices and edges

3 Map objects are static
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Assumptions

4 Target objects are small, non-static, and not mapped

5 There are rules for which subset can they appear near to

8 (kitchen-table, benchtop, drawers, dining-table) — knife. (kitchen-
table, benchtop, drawers, dining-table) — fork. (kitchen-table, benchtop,
drawers, dining-table) — spoon. (kitchen-table, benchtop, drawers, dining-
table) — bowl. (kitchen-table, benchtop, drawers, desk, dining-table) —
cup. (kitchen-table, benchtop, drawers, dining-table) — glass. (kitchen-
table, fridge) — milk. (kitchen-table, fridge, dining-table) — beer. (fridge)
— apple. (fridge) — juice. (fridge) — oranges. (bed, sofa) — pillow.
(bed, wardrobe, cabinet) — t-shirt. (bed, wardrobe, cabinet) — pants.
(wardrobe, chair) — jacket. (wardrobe, cabinet) — socks. (bedside, desk,
sofa, armchair) — glasses. (bedside, desk, sofa, armchair, TV) — keys.
(bedside, shelf, sofa) — book. (sofa, armchair, TV) — remote.

Target objects adjacency rules
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6 Underlying probabilistic process is hidden, unknown to robot
7 Positions are random per each episode

8 Policy is agnostic to target object!

9 7 is a high-level planner: it proposes a node to visit

10 Robot can navigate to given goal pose using path-planning, motion
control, obstacle avoidance, localization, etc.

li.e. they do not train one 7 per target class
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9 Approach
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Approach

[ table |
[ehair |
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W(g, Ctarget) = FC(GCN( Y))

Single GCN layer

Fully Connected block made up of 3 layers

Trained with REINFORCE

RelLU activations

7 provides distribution over vertices, conditioned on target

Navigation goal selected sampling from 7
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Approach

G=((xucL),s)
@ Poses X; € SE3: (x,y,z)+ («, 3,7), initial feature vector
[0,...,0] € [R300
@ Landmarks £;: label ¢; € C™?P, FastText feature vector y; € R300
o Target labels Crarger € CT28°%
° Cmap N Ctargets ]
@ Ctarget §é cmap
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Approach

Aggregation operation:
Z=0o(D"2AD"2Y0)
Where:
o A= A+ I: adjacency matrix (with loops)
e O: GCN weights, € [R300x64

@ Y: Node feature matrix, € RNx300

o D; = > Ajj: the diagonal degree matrix of the graph
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Approach

Logits for node i:
pi = (f(f([zi; ztarget])))
With:
Ztarget = O (Ytarget -©)
o f : R1% RO
e fr: R0 5 R3?
o :R32 !

Finally, 7 is the distribution denoted by every p;. To set the navigation
goal, we sample from 7.
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Some considerations

Trick: manually set (p; = —100) for landmark nodes to only sample
pose nodes as goals

e Optimiser: ADAM(10~%)

@ Task successful if target object is within first 10 navigation goals
@ 20 different underlying probabilistic models are considered
°

Environments are 100 % synthetically generated
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Faster convergence

Pre-training on proxy task leads to better performance, as weights are
initialized to better interpret semantic word representations:

@ Does not require topology information
@ In this case, objects in map can be from either C™3 or Ctar&et
@ Probabilistic model is different from all the ones in training

@ Speeds-up learning process

Definition (Classification Task)

Given yarger, Which pose nodes are connected to an instance of this class?
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© Results
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Experiments & results

@ 200 agents in total, 1000 episodes each
@ Baselines
@ Random policy: pick navigation goal at random, never repeating
@ Oracle policy: has access to the underlying probabilistic model, and
picks node with maximum probability
@ Metrics

© Success rate: considering 10 attempts
@ Steps to target: only for successful episodes, how many attempts
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Experiments & results

Evaluate on Training Environment
random no with
policy pre-training pre-training oracle
success rate 0.33+0.47 0.98+0.13 0.99£0.09 0.99+0.09
steps to target 5.00 +£2.70 1.414+1.03 1.45+1.09 1.6641.51

Table 1: results on seen environments

Evaluate on Unseen Environments

random no with
policy pre-training pre-training oracle
0.26 £0.44 0.92£0.28

0.96 +£0.20 0.99£0.12

510£2.89 239+£2.07 202£1.78 1.62+1.49

Table 2: results on unseen environments
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Experiments & results
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Fig. 3: Success rate (left) and distribution of steps to target
(right) combined over all target classes for different policies.
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Experiments & results

random no with
policy pre-training pre-training oracle
success 0.25+0.43 0.724+0.45 0.76+0.43 0.97+0.17
steps 5.14+£299 3.16+£254 290+244 1.89+1.78

TABLE II: Results on unseen environments with unseen
target objects.
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Experiments & results
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Fig. 4: Reward (left), success rate (centre), and steps to target (right) averaged over 200 training runs (10 randomly initialised
networks x 20 environments with different probabilistic model). The shaded region around the line corresponds to the 90th
percentile. When the policy network is initialised by the proxy task pre-training (explained in Section IV-F), it learns
significantly faster, reaching the same level of performance after a fraction of the training episodes.
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Experiments & results

Objects Never Seen During Training

0 ‘“ i“l "I‘ |“| |“ i“‘ I“‘ ‘“ ‘“ ‘“
$

; mmm random  WEs nopre-training  WEE with pre-training  WEE oracle

o o

&
g g £

o

o

o
®
o

o
s

Steps to Target
-

Success Rate
o o
[N

N

o

$

& @ g & 2
5 5 § g 8 » S
g ¢ g ¢ £ ¢ s s £ § & s 5 £ &
3 5 g § ¥ £ £ a‘}’ 5 3 £ & o N
D N B ¢ & €
& ,;f S Target Class

Fig. 6: Class-wise success rates (top) and steps to target
(bottom) for different policies and target objects that were
never seen during training. The learned policies generalise to
these unseen objects as long as they are semantically close
and behave similarly as objects the policy was trained on.
The cellphone class is an exception here, since none of the
original training classes is semantically close to it.
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@ Using an inductive model, like Graph Attention Networks, would
alleviate the performance drop in unseen environments. Also,
attending in different magnitudes to each neighbor could be useful

@ Maybe considering a “success@5" metric would tell interesting things

@ Implement in a real robot!

Patricio Cerda IA Lab - Cognitive Robotics 14 de enero de 2020 33/35



© Reference

Patricio Cerda IA Lab - Cognitive Robotics 14 de enero de 2020



Reference

[1] Siinderhauf, N. (2019). Where are the Keys? - Learning Object-Centric
Navigation Policies on Semantic Maps with Graph Convolutional
Networks. ArXiv, abs/1909.07376.

[2] Kipf, T., Welling, M. (2016). Semi-Supervised Classification with
Graph Convolutional Networks. ArXiv, abs/1609.02907.

[3] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,

Bengio, Y. (2017). Graph Attention Networks. ArXiv, abs/1710.10903.

Patricio Cerda IA Lab - Cognitive Robotics 14 de enero de 2020 35/35



	Introduction
	Concepts & Related Work
	Problem
	Approach
	Results
	Reference
	Referencias

