



# Review: A Deep Learning Based Behavioral Approach to Indoor Autonomous Navigation

Patricio Cerda

#### About the paper

• Authors: G. Sepúlveda, J.C. Niebles, A. Soto

• Presented at ICRA 2018

• Great example of what we want for IA Nav group

# **Robot Localization and Navigation**

• Traditional approach? Subsumption, metric maps

• Example: see IIC2685 course

Problem: non-optimal robustness

 Odometry
 Changes in geometry





# **Robot Localization and Navigation**

• <u>Fundamentally</u> different approach from humans

• Can we do better?

• Idea: leverage rich semantic structures from man-made environments



#### **Graph-based map representation**

- Nodes are places, identified by *perceptual* behaviors
- Edges are 'basic' *navigational* behaviors



#### **Perception?**

• Initial exploration phase to build a graph

• Deep Learning architecture to identify places (CNN)

• ...which then activate navigational behaviors

## Benefits

• Robustness to localization errors: less dependance on local geometry

• Explicit internal world representation is deeply connected to execution of goal oriented behaviors

• Facilitates HRI, now the robot operates over a highly semantic world representation

# Now, for the details...

#### Map representation

• Graph as a set of triplets: < place | behavior | place >

• In certain cases, the direction of approach implies distinction for two otherwise identical nodes

• Easy to use existing planning techniques over the graph

## Navigational behaviors

- Robot should be able to robustly:
  - Leave an office
  - Enter an office
  - Follow a corridor
  - Cross a hall
  - $\circ$  ...among others

• Key to method's viability. Deep Learning to the rescue!

#### Navigational behaviors

• Supervised imitation learning based on deep CNNs

• Virtual environment: DeepMind's Lab, 3D, first person

• Traditional path-planning over the 2D map, agent then executes and records both actions and images.

# **Reactive behaviors**

 They don't use robot's internal world knowledge => highly general

 Not purely reactive, paired up subgoal allows variations



CNN architecture

# Memory-based behaviors

• They use robot's explicit internal representation

• Encapsulate specific knowledge from environment



• Place recognition => landmark detection, for simplicity

Architecture

#### Landmark detection

• For each unique landmark, get descriptors from pre-trained VGG-Net

• Train bilinear function to get embeddings, stored as keys, where the value is the place's ID

• Special ID to handle cases with no match ('unknown')

# Landmark detection

 Cosine distance measures similarity between processed robot's view and available memory keys

Probability of being at each possible place: 
$$p(PL_i) = \sigma(\alpha_i)$$

$$\alpha_i = \sum_{l=1}^{7x7} \sum_{j=1}^m < Im_l, LM_{i,j} >$$

$$\sigma(\alpha_i) = \frac{e^{\alpha_i}}{\sum_i e^{\alpha_i} + e^{\alpha_{unk}}}$$

Threshold for valid detection

• At testing, softmax is replaced by max()

## Experiments

• Simulated offices present 3 possible structures: offices, corridors, halls

 Behaviors: manually defined. Could explore automatic techniques in future work!

| Code | Description                   |
|------|-------------------------------|
| ool  | out of office, take left      |
| oor  | out of office, take right     |
| cf   | follow-corridor               |
| iol  | enter office to the left      |
| ior  | enter office to the right     |
| chs  | cross hall, continue straight |
| chl  | cross hall, take left         |
| chr  | cross hall, take right        |
| ccc  | change corridor, straight     |
| ccl  | change corridor to the left   |
| ccr  | change corridor to the right  |

# Training

• Grayscale images: faster than RGB, performs suitably well

 Adam optimizer. Random batches of 256 samples. LR=10e-4. Batch normalization for all but the last conv layer

|      | Navigational Behaviors |                 |               |             |  |  |  |  |
|------|------------------------|-----------------|---------------|-------------|--|--|--|--|
|      | Train: #paths          | Train: #images  | Test: #trials | Accuracy    |  |  |  |  |
| cf   | 150                    | 46131           | 100           | 100%        |  |  |  |  |
| io   | 8000                   | 221734          | 100           | 100%        |  |  |  |  |
| 00   | 8000                   | 259937          | 100           | 67%         |  |  |  |  |
| 00-b | 8000                   | 259937          | 100           | 96%         |  |  |  |  |
| ch   | 3000                   | 248950          | 100           | 100%        |  |  |  |  |
| cc   | 4000                   | 123653          | 100           | 100%        |  |  |  |  |
|      |                        | Perceptual Beha | viors         |             |  |  |  |  |
|      | -                      | Train: #images  | Test: #images | Class. Acc. |  |  |  |  |
| pd   | - '                    | 12945           | 1500 (Imgs)   | 98.2%       |  |  |  |  |
| Împd |                        | 38459           | 1500 (Imgs)   | 96.7%       |  |  |  |  |

Detailed datasets + test accuracy

# Training

• 100 generated maps. For each, 10 navigational tasks. The graph is directly fed (instead of discovering it). Good overall results validate approach!

| #Maps | #Missions/map | #Missions | Av. Steps/mission | Acc.  |
|-------|---------------|-----------|-------------------|-------|
| 100   | 10            | 1000      | 8.3               | 81.2% |

- Main failures, both solvable in real implementation:

   Occasional lack of office entrance detection, camera setup issue. Maybe backtracking variant could work?
   Percented texture patterns in wirtual environment
  - Repeated texture patterns in virtual environment

# Conclusions

- Proposed method integrates perceptual and navigational behaviors
  - Less prone to localization errors due to geometry changes, for example
  - Leverages semantically rich and compact world representation

• Pending challenge: implementation in real robots!